
2-Channel DJ
Mixer

Build a two-channel DJ Mixer to
manipulate the frequency and

gain of audio files passed in from
an AUX cord based on user inputs .

PROBLEM STATEMENT

Overview

● Use external ADC to read in
audio file

● Communicate audio data from
FPGA to MCU

● Implement low and high pass
digital filters

● Vary audio gain based on user
inputs

● Output manipulated audio onto
speaker

OBJECTIVES
Channel 1
EQ Filters

Audio in/out
Channel 1
Gain

Channel 2
Gain

Channel 2
EQ Filters

Commercial 2-Channel Mixer

Division of Labor

● Output manipulated audio data (DMA &
onboard DAC)

● Interpret and transfer user input EQ
values to FPGA (onboard ADC & SPI)

● Controller for SPI communication

STM32L4 MCU

● Generating Clock for PCM1808 ADC to
read in audio

● Digital filtering of audio data based on EQ
values from the MCU

● Sending audio to MCU

iCE40 FPGA

MCU & FPGA on Development Board

Audio
Flow

ANALOG FILTERS &
OUTPUT

 External ADC

FPGA MCU

Analog
Audio In

Digital
I2S

SPI

DAC

Analog
Audio
Out

Audio Flow of System on Circuit Diagram

Audio
Flow

ANALOG FILTERS &
OUTPUT

 External ADC

FPGA MCU
SPI

DAC

Analog
Audio
Out

I2S

Audio Flow of System

External
ADC

FPGA

MCU

SPI

 DAC .

Output
Speakers

Analog
Input

Sampling Frequency - Nyquist

Human hearing ranges from 20 Hz to 20 kHz → need to sample at frequency > 40kHz

fS > 2B
Signal Bandwidth
(Max. freq included)

Sampling Rate

Nyquist Theorem

External ADC

24-BIT, MSB-First, I2S Protocol of ADC

Clock Inputs into the ADCDiagram of PCM1808 ADC and FPGA

SCKI = 256 * Fs = 24 MHz
BCK = 64 * Fs = 6 MHz
LRCK = Fs = 93.75 kHz

Can sample frequencies up to
46.875 kHz

I2S Protocol

I2S Traces Confirming Operation

DOUT

BCLK

LRCK
SCKI

DOUT

BCLK

LRCK
SCKI

DOUT

BCLK

LRCK
SCKI

DOUT

BCLK

LRCK
SCKI

0% Volume 25% Volume

50% Volume 100% Volume

I2S traces ranging from 0% to 100% volume to confirm expected operation from MSB placement
Note: red line is the data out where at higher volume amplitude is larger

FPGA ↔ MCU SPI

● 8 bit packets
● Leveraged existing SPI line
● Concerns about audio degregation
● 24bits → 8 bits is
●

Serial Peripheral Interface

SCLK

PICO

POCI

LOAD

DONE

MCU
(Controller)

SCLK FPGA
(Peripheral)

PICO

POCI

LOAD

DONE

20 MHz

Audio

EQ Vals [8]

SPI interaction between FPGA & MCU

Why SPI for Audio?

SAI Block Diagram

SAI Register Map
External DAC

PCM5102

MCU: DAC
Block Diagram & DAC Register Map

MCU Dual-Channel DAC Block Diagram MCU DAC Register Map

Want audio samples in this
register for outputting

MCU: DMA & DAC

MCU Block Diagram for Left channel Audio

ARR = 9

Use DMA to output audio into DAC output register

Data transfer is triggered by a
reload event of Timer 7, which

occurs at 800 kHz.

Filtering

Reading User Inputs - MCU ADC
Channel 1 filters Channel 2 filters

DJ Mixer Potentiometer Values

Confirming EQ Values

Mapped EQ values & sample SPI
interaction

Digital Signal Processing
FIR vs IFR

● Finite duration unit samples
dependent on N

● Dependent on past & present
inputs

● Does not require feedback

● Infinite duration unit sample
response

● Dependent on past & present
inputs and past outputs

● Requires feedback

Finite Impulse Response Filter Infinite Impulse Response Filter

Filtering - FIR Filters

Block Diagram for one filter tap computation

By stringing together filter tap computations, we are able
to apply an FIR filter

End goal was to leverage the
Mult_accumulate block

Buckets: Our Implementation

EQ Values mapped to buckets

A sliding window of 128 samples is used to manipulate audio

FIR Matlab

Zooming into
magnitude

Coefficients as floating point values
Coefficients as integers, scaled by g

FIR Matlab

Zooming into
magnitude

Sample lowpass filter with 128 taps

FIR Filters Implementation

When applying FIR filters, we are able to take out high frequencies

FIR Filters Implementation

When applying FIR filters, we are able to take out high frequencies

Pivot to Analog

RC/CR Circuit Diagram

Cutoff Frequency Calculations

ConclusionConclusion

Debugging Techniques
A Summary of Bugs & Solutions

● Two’s Complement error

○ Signage error between FPGA and
MCU

● SPI Timing

○ Too slow and overwriting samples

● Double checking logic in
simulation

○ ModelSim & MatLab Two’s Complement error on visualized with oscilloscope

Results
System Characterization

● Output frequencies up to 46.875 kHz
● Audio Flow
● Implemented RC/CR filters
●

✓ Use external ADC to read in audio file
○ System can read & output frequencies <

46.875 kHz
✓ Communicate audio data from FPGA to MCU

○ With SPI
✓ Implement low and high pass digital filters

○ FIR filters in simulation, RC/CR in hardware
✓ Vary audio gain based on user inputs

○ With potentiometer sliders
✓ Output manipulated audio onto speaker

○ Using STM DMA & DAC

Questions?

RC Low Pass

CR High Pass

OpAmp & Gain

ModelSim

ModelSim Block Diagram of FIR filters

STM32L432KC

● Maximum configurable clock
frequency of up to 80 MHz

● 256 KB single bank Flash
● 1x 12-bit ADC 5 Msps
● 2x 8 or 12-bit DAC output

channels
● 1x SAI, 2x SPI Communication

interfaces
● 14-channel DMA controller

STM32L4 MCU

STM32L432KC Pin Diagram

MCU Clock to 80 MHz

UPduino v3.1 & iCE 40 FPGA

● Clock speed
● Storage
● used lattice
● x LUTS
● x oscillator
●

Configuring & Enabling

DMA Initialization

DMA BLOCK DIAGRAM

LOAD & DONE on MCU

LOAD & DONE on FPGA

Prescalers for Clock Config
SCKI = 256 * Fs = 24 MHz

BCK = 64 * Fs = 6 MHz
LRCK = Fs = 93.75 kHz

Can sample frequencies up to
46.875 kHz

SPI Module FPGA

TOP Module Declaration

FPGA Block Diagram

